
姜志翔,男,博士,教授,硕士生导师
Email:[email protected]
办公地点:博观楼316
1. 工作经历:
² 2013.08-目前:伦理电影
环境与地理科学伦理电影
² 2018.10-2019.10:美国University of Massachusetts, Amherst, 访问学者
2. 教育背景
² 2010.09-2013.07:中国海洋大学环境科学与工程伦理电影,环境规划与管理专业,工学博士
² 2006.09-2009.07:华中农业大学土地资源管理伦理电影,土地管理专业,管理学硕士
² 2002.09-2006.07:临沂师范伦理电影地理与旅游系,资源环境与城乡规划管理专业,理学学士
3. 科研领域:
(1) 湿地生态修复和碳循环
(2) 生物炭应用及其环境效应
(3) 废弃生物质资源化利用
4. 科研项目:
[1] 国家自然科学基金面上项目,42477249,生物炭对滨海盐碱土固碳的驱动机制及区域固碳潜力评估,2025.01-2028.12,在研,主持。
[2] 国家自然科学基金面上项目,42177225,滨海湿地修复与城市污泥生物炭利用耦合系统的碳流关键过程与碳汇潜力研究,2022.01-2025.12,在研,主持。
[3] 国家自然科学基金青年基金项目,41703084,基于生物炭的生物有机质堆肥及其土地利用的温室气体排放研究,2018.01-2020.12,结题,主持。
[4] 自然资源部自然生态系统碳汇工程技术创新中心开放基金,CS2023D07,生物炭基微生物肥滨海盐碱土改良及协同固碳技术研究,2023.09-2025.08,在研,主持。
[5] 青岛市科技惠民示范引导专项,胶州湾滨海生态脆弱区土壤改良与植被多样性修复(恢复)技术研究和示范,结题,参与。
5. 教学工作:
讲授环境经济学、环境规划与管理等本科生课程、生态经济学等研究生课程。
6. 科研团队:
详见湿地生态与环境团队主页 //www.wetland-eco-env.com/
7. 近五年代表性成果:
[1] Ren, H., Kong, F., Zheng, H., Jiang Z.*, 2025. Exploring the preferred technology for sewage sludge treatment in China based on an integrated method of life cycle assessment and monetization model. J. Clean. Prod. 511, 145689.
[2] Liu, B., Jia, P., Zou, J., Ren, H., Xi, M.*, Jiang Z.*, 2025. Improving soil properties and Sesbania growth through combined organic amendment strategies in a coastal saline-alkali soil. J. Environ. Manage. 374, 124041.
[3] 刘书铭, 陈飞潼, 王春晖, 孔范龙, 姜志翔*, 2025. 不同粒径聚乙烯微塑料对农田土壤有机碳特征及其矿化的影响. 环境科学. 46(5), 3161-3170.
[4] 花玉婷, 于纪民, 纪滨玲, 刘斌, 陈飞潼, 任海溪, 郗敏, 姜志翔*, 2025. 城市污水污泥–浒苔共热解生物质炭对滨海湿地土壤微生物残体碳的影响及其机制. 土壤. 57(1), 95-106.
[5] Chen, F., Zhu, Y., Chen, K., Zheng, H., Xi, M.*, Jiang Z.*, 2024. Effect of microplastics on soil greenhouse gas emissions: A global meta-analysis study. Sci. Total Environ. 958, 178100.
[6] Xi, M., Zhang, X., Chen, G., Zhang, L.*, Jiang Z.*, 2024. Synergizing carbon sequestration mechanisms during the remediation of Cr(VI) by nano zero-valent iron loaded biochar (nZVI-BC). J. Environ. Chem. Eng. 12, 114781.
[7] Jia, P., Wang, X., Liu, S., Hua, Y., Zhou, S., Jiang, Z. *, 2023. Combined use of biochar and microbial agent can promote lignocellulose degradation and humic acid formation during sewage sludge-reed straw composting. Bioresource Technol. 370, 128525.
[8] Wang, X., Jia, P., Hua, Y., Xu, H., Xi, M.*, Jiang Z.*, 2023. Natural organic matter changed the capacity and mechanism of Pb and Cd adsorptions on iron oxide modified biochars. Sep. Purif. Technol. 314, 123625.
[9] Zhang, X., Xu, H., Xi, M.*, Jiang Z.*, 2023. Removal/adsorption mechanisms of Cr(VI) and natural organic matter by nanoscale zero-valent iron-loaded biochar in their coexisting system. J. Environ. Chem. Eng. 11, 109860.
[10] Chen, K., Zhou, S., Long, Y., Xu, H., Zhou, J., Jiang Z.*, Xi, M.*, Zheng, H., 2023. Long-term aged fibrous polypropylene microplastics promotes nitrous oxide, carbon dioxide, and methane emissions from a coastal wetland soil. Sci. Total Environ. 896, 166332.
[11] 贾培寅, 王馨, 花玉婷, 姜志翔*, 2023. 不同堆肥工艺处理的城市污水污泥对滨海湿地土壤中养分释放特征和潜力的影响. 环境科学. 44(9), 5025-5035.
[12] Zhou, S., Zhang, C., Xu, H., Jiang Z.*, 2022. Co-applying biochar and manganese ore can improve the formation and stability of humic acid during co-composting of sewage sludge and corn straw. Bioresource Technol. 358, 127297.
[13] Zhou, S., Li, Y., Jia, P., Wang, X., Kong, F. *, Jiang Z.*, 2022. The co-addition of biochar and manganese ore promotes nitrous oxide reduction but favors methane emission in sewage sludge composting. J. Clean. Prod. 339, 130759.
[14] Zhou, S., Kong, F., Lu, L., Wang, P.*, Jiang, Z.*, 2022. Biochar — An effective additive for improving quality and reducing ecological risk of compost: A global meta-analysis. Sci. Total Environ. 806, 151439.
[15] Dang, C., Kong, F., Li, Y., Jiang, Z.*, Xi, M.*, 2022. Soil inorganic carbon dynamic change mediated by anthropogenic activities: An integrated study using meta-analysis and random forest model. Sci. Total Environ. 835, 155463.
[16] 姜志翔, 崔爽, 张鑫, 郗敏, 孙德茂, 2022. 基于Meta-analysis的生物炭对土壤硝态氮淋失和磷酸盐固持影响. 环境科学. 43(10), 4658-4668.
[17] 张雪, 孔范龙, 姜志翔*, 2022. 基于生态功能的滨海湿地土壤质量综合评价方法构建及实证分析. 环境科学. 43(5), 2709-2718.
[18] Jiang, Z., Zheng, H., Xing, B.*, 2021. Environmental life cycle assessment of wheat production using chemical fertilizer, manure compost, and biochar-amended manure compost strategies. Sci. Total Environ. 760, 143342.
[19] Cui S., Kong F., Li Y., Jiang Z.*, Xi M.*, 2021. Effect of mineral loaded biochar on the leaching performances of nitrate and phosphate in two contrasting soils from the coastal estuary area. Sci. Total Environ. 779, 146346.
[20] Yin X., Xi M., Li Y., Kong F.*, Jiang Z.*, 2021. Improvements in physicochemical and nutrient properties of sewage sludge biochar by the co-pyrolysis with organic additives. Sci. Total Environ. 779, 146565.
[21] Jiang, Z., Zou, Y., Li, Y., Kong, F., Yang, D.*, 2021. Environmental life cycle assessment of supercapacitor electrode production using algae derived biochar aerogel. Biochar 3, 701-714.
[22] Dai, Y., Zheng, H., Jiang, Z.*, Xing, B. *, 2020. Combined effects of biochar properties and soil conditions on plant growth: A meta-analysis. Sci. Total Environ. 713, 136635. (ESI高倍引)
[23] Liu, S., Kong, F., Li, Y., Jiang, Z.*, Xi, M.*, Wu, J., 2020. Mineral-ions modified biochars enhance the stability of soil aggregate and soil carbon sequestration in a coastal wetland soil, CATENA 193, 104618.
[24] Jiang, Z., Lian, F., Wang, Z., Xing, B. *, 2020. The role of biochars in sustainable crop production and soil resiliency. J. Exp. Bot. 71, 520-542. (ESI高倍引)
[25] Jiang, Z*, Dai, Y, Du, T, 2020. Comparison of the energetic, environmental, and economic performances of three household-based modern bioenergy utilization systems in China. J. Environ. Manage. 264, 110481.
[26] Dai, Y, Zheng, H*, Jiang, Z,* Xing, B, 2020. Comparison of different crop residue-based technologies for their energy production and air pollutant emission. Sci. Total Environ. 707, 136122.
[27] Jiang, Z, Dai, Y, Luo, X, Liu, G, Wang, H, Zheng, H*, Wang, Z*, 2017. Assessment of bioenergy development potential and its environmental impact for rural household energy consumption: A case study in Shandong, China. Renew. Sust. Energy Rev. 67, 1153-1161.